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Abstract. The in-plane ordering of HNO, intercalated in graphite is investigated. Above 
248 K the nitrate molecules form a liquid-like phase whose diffraction pattern has been 
studied in some detail. It is suggested that the intensity distribution is caused by a new type 
of two-dimensional ordering. The general features of a classical correlation function giving 
diffuse and hexagonally modulated Bragg spots are outlined. A system of ordered and 
inhomogeneously contracted clusters of approximate size 600 A*, consisting of roughly 40- 
50 scattering centres, is presented as a structural model. The clusters are anchored in such a 
way that the sixfold symmetry of the correlation function is preserved. Good agreement with 
experimental data is obtained by allowing for position-dependent fluctuations transverse 
with respect to a radial lattice contraction. Intermolecular distances are found to be sig- 
nificantly reduced near the edge of the cluster. 

1. Introduction 

Graphite intercalation compounds (GICS) are formed when guest molecules or atoms 
enter regularly spaced carbon layers. In stage n compounds there are n such layers 
between the two-dimensional dopant structures. During the intercalation process, holes 
or electrons are injected into the graphite bands, which give rise to changes in con- 
ductivity and Fermi level. The materials are highly anisotropic (Lundberg and Sundqvist 
1986). They have potential applications in energy storage and catalyst technology. To 
date, relatively few acceptor intercalants have been studied. The present paper deals 
with the in-plane structure of nitrate molecules in stage 2 graphite (Fuzellier et a1 1977) 
at temperatures above 248 K. In this temperature range, we find that a new, and hitherto 
unreported, type of structural phase exists. 

The scope is as follows: § 2 contains a brief account of the experimental part of the 
work; in § 3, we present and discuss a classical correlation function which is capable of 
reproducing observed x-ray scattering data; concrete proposals for the structure together 
with a discussion will be given in 9 4. 

2. Experimental details 

It is well known that two-dimensionally ordered layers on surfaces are strongly influenced 
by the substrate structure. A similar situation exists for intercalated materials. The 
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Figure 1. Diffuse spots (see text) from HNO, in stage 2 graphite as a function of the two- 
dimensional scattering vector Q = (Q,, Q,, 0). (a) X-ray precession photograph showing the 
spatial variation of intensity at 248 K, just above T,. The x-ray wavelength A is 1.5418 A. ( h )  
Smoothed data at T = 257 K .  At higher temperatures the broadened spots turn into an 
inhomogeneous ring. 

question of the in-plane ordering of HNO, molecules at temperatures below 248 K has 
recently been elucidated. Below 210 K a commensurate superstructure is known to exist. 
A 'weakly' incommensurate structure was found in the temperature interval between 
210 and 248 K (Samuelsen et al1984,1985). Above 248 K, however, a disordered phase 
is formed whose diffraction pattern has a hexagonal character. The transition is of first 
order. The diffraction spots are rotated 30" with respect to the direction of the graphite 
(100) Bragg maxima and are found at the reciprocal distance 0.371( 1 10)Gl from the origin. 
These spots are incommensurate with the graphite structure. In addition to being broad, 
thus indicating a relatively short correlation length, they appear to have a peculiar shape. 
The angular width is significantly larger for the part of the spot with the largest scattering 
angle. The overall shape is reproduced in figure l(a). Note that this picture is rep- 
resentative for temperatures close to T, = 248 K. At higher temperatures the six outer 
rims merge together, taking the shape of a single hexagonally modulated ring. The 
intensity maxima remain at 30" away from the graphite reflections, but the intensity at 
the inside of the original smeared HNO, spots has vanished. 

It is noteworthy that recordings of the type shown in figure 1 are obtained only by 
using a single crystal, as first found by Samuelsen et a1 (1984, 1985). Recently, we have 
remeasured the intensity distribution for T > 248 K and confirmed the diffraction effect, 
which-to our knowledge-has not been analysed elsewhere. By means of carefully 
oriented detector scans at various temperatures the diffuse spots were mapped in some 
detail. A description of the experimental set-up can be found elsewhere (Samuelsen er 
a1 1987). 

Figure l(b) represents smoothed data recorded at T = 257 K. The broken line shows 
the location of the maximum intensity. Close to T,, however, we have effectively 
only six diffuse spots, and the corresponding molecular arrangement must possess 
an 'ordered' character. The diffraction pattern resembles, at least qualitatively, the 
broadened first-order reflections of a small two-dimensional crystal with hexagonal 
symmetry. The transition to a ring-like intensity distribution occurs gradually with 
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increasing temperature, as the structure becomes more 'liquid like'. Even at room 
temperature a weak hexagonal modulation is found to remain. 

Domain shape or size effects cannot account for the measured intensity profiles. The 
reason is that the shape function of a domain will modify all spots in essentially the same 
manner. This occurs via convolution processes and the spots are thereby given equal 
symmetry and a relative orientation. The effect is clearly incompatible with the observed 
gradual transition to an azimuthal intensity distribution. We have checked carefully that 
the instrumental broadening is negligible. Even if the experimental smearing were non- 
zero, it could not explain the observed diffraction patterns. The arguments for this 
conclusion are essentially identical with the above arguments. 

According to Halperin and Nelson (1978), continuous melting of two-dimensional 
crystals may occur in two steps. The first stepconsistsof a dislocation unbinding transition 
into an orientationally ordered liquid (hexatic phase). At  higher temperatures there is 
a transition to an ordinary liquid phase. This picture is consistent with the notion that 
true long-range order is absent in two-dimensional matter. The latter effect is due to 
long-wavelength fluctuations (Jancovici 1967) which convert diffraction peaks to power- 
law singularities. 

The theory of hexatic phases is not convincing enough to allow a systematic descrip- 
tion of our data (Aeppli and Bruinsma 1984). Instead, it seems appropriate to attempt 
an analysis of the classical correlation (Patterson) function. In § 3, we deduce its general 
character and calculate the corresponding intensity. 

3. Correlation function 

Since the x-ray scattering of T > T, forms continuous streaks along the reciprocal c" 
axis (Samuelsen et a1 1984, 1985), the intercalated layers are known to be mutually 
uncorrelated in the disordered phase. The pronounced broadening of scattered intensity 
shows that the in-plane correlation length is limited. 

We shall be able to give a general explanation for the intensity profiles by means of 
a simple model for non-uniform ordering in two dimensions. The total correlation p ( r )  
can be visualised as a sum of partial distributions for anti-convoluted electron density, 
i.e. 

In order to conserve the sixfold symmetry of the scattering diagram the positional and 
orientational order must be invariant during arotation of n/3. Hence, a two-dimensional 
hexagonal lattice is a natural reference configuration for p ( r ) .  Furthermore, since we 
want a continuous transition towards liquid-like disorder, the possibility of having 
angular broadening must be included. We give each partial distribution a 'banana' shape 
through the use of the expression 

p l ( r )  = a( ' ) ( r  - r l ) b @ ) ( Q ) .  (2) 
The distances between the partial distributions and origin are denoted by rl and cor- 
respond to inter-molecular lengths. Radial half-widths are determined by the shape of 
the a(')-functions. 

An arbitrary 'lattice'-like pattern of sixfold symmetry can be constructed by sys- 
tematically superposing concentric hexagons. Since we want a correlation function that 
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( 0 )  l b l  
Figure 2. ( a )  Contracted hexagonal net (points). For convenience the net is shown super- 
imposed on a graphite substrate (hexagons). The 'lattice' constant becomes progressively 
smaller as one moves away from the centre (+) towards the edge of the structure. ( b )  
Displacement vectors. The vector directed towards the centre represents the effect of an 
inhomogeneous static deformation. The two transversally oriented vectors take care of the 
uncertainty in angular direction when the displacements are small. 

tends to be non-zero in the vertex regions of the hexagons, their edge lengths are bound 
to be equal to ri. A Fourier decomposition gives 

n1 

p ( r )  = 2 a'::)(r - r , )  cos[6v((a - (a,)]. 
I u = o  

(3) 

The number ni of harmonics for hexagon i determines the degree of azimuthal local- 
isation. In order to fill the plane correctly, the various hexagons must have different 
rotational phases (ai with respect to the x axis. 

Note that the following two features of the correlation function are indispensable. 

(i) Near-neighbour distances between the distributions decrease as one moves away 
from the origin. This corresponds to a denser distribution of inter-molecular distances. 

(ii) (i) is accompanied by a rapidly increasing azimuthal broadening. 

The former effect (i) is equivalent to an inhomogeneous contraction of the hexagonal 
net and requires a new set of ri values in (2). A varying angular broadening is 
accomplished by permitting the width of b(')((a) to be a function of r (figure 2(b)) .  

For completeness, we now give the intensity distribution. Fourier-transforming (3), 
we get 

"i 

P ( Q ,  Y) = C. d $ ) ( Q )  C O S [ ~ ~ ( Y  - (ai)] 
i u = o  

(4) 

where Y is the azimuthal angle of the scattering vector. Bessel functions of order 0 ,6 ,  
12, , , . determine the coefficients 

@ ) ( Q )  = (-1)' ra!?(r)JhV(Qr) dr.  ( 5 )  

At high temperatures the double sums (3), (4) can be reduced to a few terms. Near T,, 
however, the number of harmonics needed for a description of the angular localisation 
becomes unacceptably high. Nevertheless, it can be explicitly shown (Bremer etall988) 
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that the above picture of the correlation is capable of giving a general explanation for 
the peculiar broadening of the diffraction spots. This is done in the Appendix for small 
uncertainties in positional and orientational order. 

4. Anchoring model 

4.1. Model calculations 

In this section, we introduce concrete molecular arrangements. The correlation function 
p ( r )  will not be explicitly calculated but has to fall within the class discussed in 8 3.  The 
intensity is obtained through the relation I (Q)  = Ip(Q)l2 where p ( Q )  is the Fourier 
transform of the actual distribution of average electron density. 

The simplest possible choice for p(r )  is the correlation function of a truncated 
crystalline lattice. Experimentally, such a function is not easily distinguishable from the 
correlation function of an infinitely extended disordered structure. One important 
difference will be the absence of average long-range positional and orientational order. 
However, the main effect of the latter contribution is to increase the intensity at small 
scattering angles. In our measurements, intensity was not recorded below 5". 

We have worked out some numerical Fourier routines in order to study the effect of 
atomic displacements in small hexagonal domains. Each HNO, molecule has been 
replaced by a scattering centre consisting of a Gaussian two-dimensional electron density 
distribution. The radial density of each molecule goes as exp{-ln2[(r - r,)/rI(r,)l2}. The 
r,-values are given by the radial shifts whereas the radial uncertainty is taken care of by 
means of the parameter rl(r,). For technical reasons the azimuthal distribution has been 
replaced by exp{ -ln2[y/r2(r,)I2} where y = r,O is transverse with respect tor,. The origin 
is located at the centre of each cluster. A rapidly increasing angular uncertainty is allowed 
for by means of the parameter r2(r,) - r:. 

An essential part of our suggestion for the structure is that the clusters are anchored 
at fixed positions. The sixfold symmetry of the intensity shows that the allowed sym- 
metries of these positions are either trigonal or hexagonal. Hence, both the centres and 
the vertices of the carbon hexagons are potential anchoring sites (figure 2(a)). The 
symmetries of these two anchoring possibilities are not modified by the graphite layers 
on the top of the nitrate molecules. The stacking sequence of graphite planes in stage 2 
compounds is known to be AB/BA/AB . . . , where a solidus (/) stands for an intercalant 
layer. The perpendicular antiferroelectric arrangement of HNO, molecules discussed 
by Touzain (1979) will likewise leave the symmetries unaffected. Note, however, that 
recently published infrared spectra (Conrad and Strauss 1985) together with nuclear 
resonance fluorescence data (Moreh et a1 1986) do not exclude the possibility that the 
HNO, planes are weakly tilted with respect to the [OOl] direction of the graphite crystal. 

The molecular structure factor has not been included in our calculations, since it 
would anyway involve only a slow dependence on the scattering vector. A similar 
assumption was made by Qian et a1 (1986) in a study of liquid layers in the ternary 
graphite intercalation compound K(NH,), ,,C2,. In their work, structure and diffraction 
pattern were modelled by means of computer-generated planar distributions of hard K+ 
and NH, discs. The sizes of the NH, discs were permitted to vary according to a 
distribution function. In our recordings, we were unable to see second-order reflections. 
Hence, a substantial intensity reduction at high Q-values is believed to be the most 
conspicuous effect of the internal HNO, structure. 
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Figure 3.  Effect of inhomogcneous ratli;il con- 
traction and angular uncertainty in i~ small two- 
dimensional crystal. The intensity pattern has six- 
fold symmetry and is rotated 30" with respect to 
the (100) reflections o f  graphite (sec figure 2 ( r r ) ) .  
Distributions of this type result automatically 
when the radial contraction and the angular fluc- 
tuation of the molecules increase quadratically 
with increasing distance from the centre of the 
crystal. There is 21 range of parameters which arc 
capable of qualitativcly rcproducing correct pic- 
tures. Thc domain giving the above intensity has 
an area of about 600 A'. containing SS scattering 
centres. Although not essential for the effect. the 
radial widths arc permitted to increase weakly 
with r according to r , ( r )  = 3 x IO 'r  (A).  The 
radial and inhomogcneous contraction follows ii 
- 1.3 x IO ?r?lawandtheangul;irhalf-widthgoes 
as r?(r) = T , ( r )  + 2.5 x IO 'r'. 

Figure 4. Intensity (curves A) BS measured by 
a detector scan through an intensity maximum. 
Curves B show the intensity :IS ii function of scat- 
tering anglc at ii reciprocal azimuthal angle of So. 
The model described in text (the anchoring model 
of Pi 4.2) gives fits shown by the full circles (curves 
A and B). 

If we interpret figure 2(a) as a concrete structure (not a correlation function) the 
positions rj of the depicted scattering centres will explain the rotation of 30" with respect 
to the graphite Bragg (100) reflections. With this lattice for the HNO, molecules, 
including the contractions, intensity distributions of the type shown in figure 3 are 
generated. The outer parts of the diffuse spots are seen to be strongly broadened in the 
azimuthal direction. It is found that the effect is achieved by allowing the angular 
Gaussian half-widths to increase rapidly with r in such a manner that Tz is significantly 
larger than r,. 

4.2. Numerical results 

We now show that our model is quantitatively reasonable, too. In general, at low 
temperatures, satisfactory fits to the experimental data have been obtained. As an 
example, we reproduce in figure 4 (curves A) a comparison between radially recorded 
(open circles) and calculated (full circles) intensities through one of six equivalent spots. 
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The small discrepancy is mostly due to the experimental uncertainty. Uncontracted, 
each cluster, of assumed circular shape, is found to have a diameter of 24 8, and to 
contain 37 molecules with an inter-molecular distance close to 4.0 A. Such a value is 
incommensurate with the graphite structure; commensurability would require 4.26 A = 

At the edge of each cluster the quadratic lattice contraction is fitted to 0.9 A. The 
average ‘lattice’ constant is thus effectively smaller than the nitrate-nitrate distance 
(about 4.0 A) in solid HNO, (Luzzati 1951). It follows that the total out-of-phase step 
with respect to the carbon layers is 1.7 A which is slightly longer than a graphite hexagon 
edge (1.4 A). There is generally no easily recognisable relationship between the value 
for the shift and characteristic inter-atomic distances in graphite. 

Furthermore, at different temperatures, new values for the fit parameters are found, 
and there is in addition a distribution of admissible cluster sizes and shapes. The average 
number of molecules in figure 4 is estimated to be somewhere between 40 and 50, 
whereas the cluster size variation is about 10-20%. The areas between the clusters are 
probably so disordered that scattered x-ray amplitudes from neighbouring islands have 
random phases. 

Batallan et a1 (1988) have found evidence from inelastic neutron scattering for the 
translational motion of HN0, in the liquid phase, with jumps equal to 2.45 A. This value 
is close to the in-plane lattice vector of graphite and shows that empty ‘lattice gas’ 
positions are available, possibly as a result of having locally commensurate regions. 
This type of disorder has been studied by Winokur et a1 (1982) who made numerical 
simulations of the structure factor corresponding to randomly decorated triangular 
lattices. It is interesting to note that such calculations in many cases can be performed 
analytically. Using two-dimensional Ornstein-Zernike relationships, it is possible to 
express the intensity pattern in terms of average vacancy concentration. The effect of 
imposing various exclusion distances (Bremer 1986) is easily taken care of through the 
choice of indirect correlation. The calculations, together with the experimental data, 
show that effects associated with lattice-gas disorder play a negligible role in HNO, GICS 
above 248 K. 

The perturbing influence of a periodic host on alkali liquids has been discussed by 
Reiter and Moss (1986) and Moss et a1 (1986). The complex structural arrangement 
of HNO, in graphite is the outcome of competition between intercalant-host and 
intercalant-intercalant interaction. Because of polarisation and charge transfer effects 
the inter-molecular potential is rather different from the interaction in solid three- 
dimensional HNO,. No signs of chain-like structures due to hydrogen bonds between 
the predominantly undissociated HNO, molecules have been found in this work. 

a&.. 

5.  Conclusions 

We have reported a study of the x-ray scattering data for the intercalation compound 
CIoHNO3. This two-stage compound has a series of complex phases. The characteristic 
features of the inter-molecular correlation function above 248 K are worked out. We 
believe that the observed diffraction pattern is due to local hexagonal orientational 
ordering which vanishes rapidly with increasing distance. 

Specifically, at low temperatures a surprisingly simple realisation of the structure has 
been found. The model gives excellent fits to the experimental data. Briefly, it can be 
described as follows. Each second carbon layer contains inhomogeneously contracted 
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clusters. The clusters are relatively small and it is a very good approximation to assume 
that they scatter intensity independently of each other. The uncertainty in angular 
position increases rapidly while the HN03-HN03 distance becomes smaller as one 
moves from the centre to the edge of each cluster. This model represents a con- 
figurationally time-averaged approximation to the real structure. 

Appendix 

We now show that the proposed correlation function is capable of explaining the peculiar 
broadening in figure 1. It is convenient to define a reference configuration for the 
correlation function as 

a 

pO(r) = E ~ ( r  - rj>T(r) (All  
j =  1 

where T(r)  expresses the gradual correlation fall-off. We do not specify the exact shape 
at this stage since the most important effect of T(r) is to broaden the diffraction spots. 
Note that the various rj-vectors specify a two-dimensional hexagonal lattice where rj is 
the inter-molecular distance. Equation (Al) is thus applicable just above T, where the 
degree of disorder is relatively small. 

The correlation function (Al) consists of sharp Dirac functions. There are, crudely 
speaking, two qualitatively different ways of broadening po(r) .  The various position- 
independent contributions can be included by simply convoluting (Al) with appropriate 
broadening functions. However, this results normally in a relatively slow Q-dependence 
and will therefore not be included. In addition, however, there are anisotropic and non- 
uniform contributions, to be discussed below. 

The lattice positions in (Al) are next shifted by a displacement field d(r) .  (Note that 
these shifts are introduced in order to study equation (1) just above T,.) 

cc 

p(r> = 1 ~ [ r  - r, - d ( r j ) ] ~ ( r ) .  (A21 
j =  1 

The Fourier transform of (A2) is 
z 

P ( Q )  = 1 d r  2 S(r - r j )  exp{iQ - [r  + d(r)]}  T(r) 
j =  1 

which can be rewritten as 
0: 

Using1 = @(e)) and expanding the exponential function inside the parentheses, we find 
for the intensity 

CO 

I = P o  + 1 d r  T(r)S(r - r j )  exp(iQ * r)({iQ d(r) - +[Q d(r)]’ + . . .}). (A51 
j =  1 

The averaging operation refers to a configurational average and such processes as 
diffusion jumps and vibrational motion. 

We now split d into two parts: 
d(r) = U(r)  + u(r) .  (A6) 

The first term expresses a static deformation whereas the second term is due to time- 
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dependent fluctuations. The intensity can be written as 

where S1, S 2 ,  . . . will be discussed below. We shall utilise the facts that (U) = 0 while ( U ) ,  
(U) and (u2) are non-zero. A truncation is possible after the first few terms in (A7) when 
(Q * d )  <c 1. This is a valid approximation if T(r) goes to zero sufficiently rapidly. 

We also note that an expansion of the shift d(r) can start with the second-order term 
Id1 - r2 when U(r )  is isotropic and radial, i.e. U(r )  = U(r)a1. The reason is that linear 
terms U - f r  correspond to a homogeneous dilation or contraction of the lattice and 
this amounts only to a redefinition of the lattice constant, the effect of which can be 
absorbed into the definition ofpo(r) as given by equation (Al). (In the case of HNO, in 
graphite the radial shift is found to be negative.) The directions of U(r)  and U are shown 
in figure 2(b). It can be shown (Bremer 1986) that components of U(r)  along &2 entail 
azimuthally oriented and symmetrically located satellite peaks. Such effects have not 
been observed in our experiments and are henceforth neglected. 

I = p o  +SI + s* + s, + .  . . (-47) 

Defining 

O(Q) = 2n Im rlUIT(r)Jl(Qr) d r & l  (A81 
0 

after making the reasonable assumption that T = T(lrl), we obtain 

i.e. the transform of the (vectorial) displacement field O(Q) is distributed at the reciprocal 
lattice points Q, by means of a folding operation. Equation (9) generates an intensity 
pattern with sixfold symmetry. Concentrating on the hexagonally distributed points 
nearest the origin, and referring Q to one of the six equivalent lattice points Q1, Q’ = 
Q - QI, we get 

SI(Q’) = o(Q’>(Q’ + Q I  cos V )  W O )  
where W is the angle between Q’ and Q , .  Hence, the intensity is transferred from that 
part of the broadened spot which is closest to the origin. The intensity is shifted outwards 
and the profile becomes asymmetric. 

We now assume that ( u 2 ) B ( U 2 ) ,  i.e. the second-order term S3 from the static 
displacement is neglected. The rationale for this choice is the wish to keep the model as 
simple as possible. Defining 

drr(u2)T(r)J2(Q‘r) (All)  

J 1  < e r r >  
Q’r 

6(Q’) = n 1 d r  r(u2)T(r) - 

we find after some calculations that 

The angle between Q and Q,, denoted by Y, is of order Q’/Ql which is much smaller 
than unity at low temperatures. 

The above equation (A13) describes two azimuthally oriented side lobes. In agree- 
ment with the experimental observations the combined effect of (A9) and (A12) is to 
increase the intensity at the outside of the spots and to ‘stretch’ them along the angular 
direction. At higher temperatures, we get a gradual development of a modulated ring. 
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